

# Imperial College London

# Stem cells and heart function – how to repair a broken heart?

Professor Sian E. Harding

Director, Imperial BHF Centre for Cardiac Regeneration

#### **Imperial BHF Centre for Cardiac Regeneration 2017-2021**

Human stem cell-derived cardiomyocytes (SC-CM) in vivo cardiac muscle regeneration and paracrine-mediated repair



# Natural history of heart failure



# Structure of the contracting myocardium







# Regeneration of cardiomyocytes? Carbon dating the heart



50% of cardiomyocytes are present at birth. Turnover rate is ~1% per year at age 25, and 0.45% per year at age 75 Bergmann, Science 2009

# Can stem cells repair the heart? What is a stem cell?



- Undifferentiated cells with capacity for prolonged or unlimited self renewal
- Asymmetric cell division
- Pluripotent (any cells except placenta)
- Stem/progenitors in adult tissues differentiate to more limited range to maintain normal tissue (multipotent)

Adapted from A.Smith Annu.Cell Dev.Biol (2001) 17:435-62

**Differentiation**: is the process by which a less specialized cell becomes a more specialized cell type

#### WHICH STEM CELLS FOR CARDIAC REPAIR AND MODELLING?



Bone Marrow Stem Cells (BMC)





## Results of bone marrow stem cell implantation for heart disease

- Started around10 years ago with small safety trials
- Now more than 500 treated and 500 control patients in double-blind randomised placebo-controlled trials
- Procedure is safe in the short and medium term
- Some benefit, but not very large
- But, not producing many new myocytes
  - new blood vessels?
  - secreted protective factors?

Cardiac output (ejection fraction)



# Human embryonic stem cells discovered in 1998

In vitro fertilization day 1

Embryos frozen at 1-7 days (at this point, ~80% embryos do not implant either naturally or after IVF)

Unused embryos must be destroyed

Permission requested at that point to use for research

Cell line made

Held in Stem Cell Bank

Distributed free to researchers

Can become any cell type in the body





nature.com ► journal home ► archive ► issue ► protocol ► full text

NATURE PROTOCOLS | PROTOCOL



Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/β-catenin signaling under fully defined conditions

Xiaojun Lian, Jianhua Zhang, Samira M Azarin, Kexian Zhu, Laurie B Hazeltine, Xiaoping Bao, Cheston Hsiao, Timothy J Kamp & Sean P Palecek





# Pluripotent stem Cell-Derived Cardiomyocytes



# Human induced pluripotent stem cells -2008 Nobel Prize 2012

 Skin fibroblasts are treated with retroviruses carrying "stemness" factors discovered in embryonic stem cells

 They form embryonic-like stem cells which differentiate into many cell types (including cardiomyocytes):-

This produces person-specific stem cells with potential for immune matching

adult human cells



induced pluripotent stem cells Patient-specific genotype



**Patient-specific** repair



drugs in clinical trials





pharmaceutical



in vitro disease modelling

cardiovascular cells

# 3D constructs for implantation and modelling

## Fibrin-based mini engineered heart tissue (FBME)

Engineered heart tissue: three-dimensional, force-generating, reconstituted heart tissue



- Generation under standardized conditions

# Engineered heart tissue



Human stem cell-derived cardiomyocytes in fibrin



### Imperial College London

## **Upscaled engineered heart tissue**

- Second generation EHTs significant up-scaling:
  - 1 EHT per well in 6 well plate
  - 1.7ml of master mix compared to 100ul
  - 15-20 vs 0.5 million cells per EHT
- Master mix and manufacturing similar







 Upscaling achieved predominantly by development of silicone posts and teflon spacers

Prof Eschenhagen, Dr F Weinberger, Dr T Owen

# In vivo rabbit model of myocardial infarction- a bridge/replacement for large animal studies

- Rabbit myocytes have similar mechanisms of repolarization / action potential morphology
- Scar morphology is similar
- Heart failure/post myocardial infarction syndrome has human similarities
- The lack of collateral circulation enables a consistent infarct size

Relatively tolerant of immunosuppression





# Rabbit in-vivo grafting protocol

Thanks to Hannah Jones, Phil Rawson, Alasdair Gallie, Lindsay Benson



# Progress to date

- Development and characterization of upscaled EHT patch
- Feasibility of grafting on both control and infarcted rabbit hearts
- EHT do not appear arrhythmogenic
- EHTs are supplied by vessels that appear to be from the rabbit in origin
- Significant troponin retention at 4 weeks
- Evidence of possible synchronisation between graft and host

### Work-in-progress

- Optimise immunosuppression/cell protection factors to improve retention
- Separate out in time the MI and patch placement (heart failure model)
- Addition of materials
- Move to GMP conditions
- Develop less invasive delivery methods for pig/human



# A patch for stem cell delivery to the heart

- Applies cells directly to damaged area
  - Can be prepared in advance
- Maintains cells in the right position

Supports the scar to prevent its expansion

 Can we use materials with conduction properties to reduce irregular heart beats?



#### CN1 This slide is a good explanation of this work for this audience

This is something they will be able to understand and see its clinical applications well. Christie Norris, 22/02/2017

### Imperial College London

# **Conductive Patch speeds contraction over damaged heart**

Patch applied to centre of LV bridging infarcted and non-infarcted myocardium



#### **MI** Heart



Significant increase in CV in MI hearts

### Imperial College London

# Improving biocompatability using auxetic patterning

Auxetic micropatterning aims to mimic direction of cells in the normal heart



Replacement – Tesco chicken breasts

Kella Kapnisi, Catherine Mansfield

# The 3Rs

### Refinement

- Floor pens and enrichment for rabbits
- V-gel for intubation
- CO2 monitoring during surgery
- Care with diet post-op
- Minimally invasive telemetry using linq devices





## Replacement

- Rabbit as model suitable for regulatory submissions
- Ex vivo ultrathin slice model for cell integration
- Human iPSC-derived cardiomyocytes in disease modelling

## Models for iPSC-CM integration – ultrathin myocardial slices

Cesare Terracciano, Filippo Perbellini and the Cell Electrophysiology lab, NHLI, Imperial College London





#### **OBJECTIVES**

• Extension of the survival time of the slice through modification of electro-mechanical stimulation and culture conditions: we have extended culture conditions of rabbit ventricular slices to 5 day culture without loss of contractile reserve.



• Understanding of the timing and mechanisms of hESC-CM (or hiPSC-CM) engraftment: we have found that hiPSC-CMs easily attach and beat on slices after 24hrs but not synchronously with the slice.

After 48hrs hiPSC-CMs start beating synchronously but this seems to be due to mechano-electrical activation rather than to electrical integration.

adult human cells



induced pluripotent stem cells Patient-specific genotype



Patient-specific repair



drugs in clinical trials



cardiovascular cells

Reduces animal use





in vitro disease modelling

#### Human induced pluripotent stem cell-derived cardiomyocytes in disease modelling

Long QT syndromes
LQT1 (KCNQ1 mutations)
LQT2 (KCNH2 mutations)
LQT3 (SCN5A mutations)
LQT8 (Cav1.2 mutations,
Timothy syndrome)

1 44 th 1 4 th 1

# The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

OCTOBER 7, 2010

VOL. 363 NO. :

### LETTER

doi:10.1038/nature09747

# Modelling the long QT syndrome with induced pluripotent stem cells

Ilanit Itzhaki<sup>1</sup>\*, Leonid Maizels<sup>1</sup>\*, Irit Huber<sup>1</sup>\*, Limor Zwi-Dantsis<sup>1</sup>, Oren Caspi<sup>1</sup>, Aaron Winterstern<sup>1</sup>, Oren Feldman<sup>1</sup>, Amira Gepstein<sup>1</sup>, Gil Arbel<sup>1</sup>, Haim Hammerman<sup>2</sup>, Monther Boulos<sup>2</sup> & Lior Gepstein<sup>1,2</sup>



European Heart Journal (2011) 32, 952–962 doi:10.1093/eurhearti/ehr073 FASTTRACK BASIC SCIENCE

Drug evaluation in cardiomyocytes derived from human induced pluripotent stem cells carrying a long QT syndrome type 2 mutation

Elena Matsa<sup>1</sup>, Divya Rajamohan<sup>1</sup>, Emily Dick<sup>1</sup>, Lorraine Young<sup>1</sup>, Ian Mellor<sup>2</sup>, Andrew Staniforth<sup>3</sup>, and Chris Denning<sup>1\*</sup>

#### Cardiomyopathies



European Heart Journal doi:10.1093/eurheartj/ehs096 **BASIC SCIENCE** 

#### Patient-Specific Induced Pluripotent Stem-Cell Models for Long-OT Syndrome

Alessandra Moretti, Ph.D., Milena Bellin, Ph.D., Andrea Welling, Ph.D., Christian Billy Jung, M.Sc., Jason T. Lam. Ph.D.: Lorenz Rott-Flügel. M.D.: Tatiana Dorn. Ph.D.: Alexander Goedel. M.D.:

#### LETTER

doi:10.1038/nature09855

# Using induced pluripotent stem cells to investigate cardiac phenotypes in Timothy syndrome

Masayuki Yazawa<sup>1</sup>, Brian Hsueh<sup>1</sup>†, Xiaolin Jia<sup>1</sup>†, Anca M. Pasca<sup>1</sup>†, Jonathan A. Bernstein<sup>2</sup>, Joachim Hallmayer<sup>3</sup> & Ricardo E. Dolmetsch<sup>1</sup>

nature

Vol 465|10 June 2010|doi:10.1038/nature09005

#### LETTERS

# Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome

Xonia Carvajal-Vergara<sup>1,2</sup>, Ana Sevilla<sup>1</sup>\*, Sunita L. D'Souza<sup>1</sup>\*, Yen-Sin Ang¹, Christoph Schaniel¹, Dung-Fang Lee¹, Lei Yang¹, Aaron D. Kaplan², Eric D. Adler², Roye Rozov², YongChao Ge³, Ninette Cohen³, Lisa J. Edelmann³, Betty Chang¹, Avinash Waghray¹, Jie Su¹, Sherly Pardo<sup>5,6</sup>, Klaske D. Lichtenbelt², Marco Tartaglia<sup>8</sup>, Bruce D. Gelb³<sup>6,9</sup>\* & Hor R. Lemischka¹\*

#### Derivation and cardiomyocyte differentiation of induced pluripotent stem cells from heart failure patients

Limor Zwi-Dantsis<sup>1,2</sup>, Irit Huber<sup>1</sup>, Manhal Habib<sup>1</sup>, Aaron Winterstern<sup>1</sup>, SEAD, Amira Gepstein<sup>1</sup>, Gil Arbel<sup>1</sup>, and Lior Gepstein<sup>1,3\*</sup>

#### STEM CELLS

# Patient-Specific Induced Pluripotent Stem Cells as a Model for Familial Dilated Cardiomyopathy

Ning Sun, <sup>1,2,3</sup>\* Masayuki Yazawa, <sup>4</sup>\* Jianwei Liu, <sup>5</sup> Leng Han, <sup>1,2</sup> Veronica Sanchez-Freire, <sup>1,2</sup> Oscar J. Abilez, <sup>6</sup> Enrique G. Navarrete, <sup>2</sup> Shijun Hu, <sup>1,2</sup> Li Wang, <sup>1,2,3</sup> Andrew Lee, <sup>1,2,3</sup> Aleksandra Pavlovic, <sup>1</sup> Shin Lin, <sup>1</sup> Rui Chen, <sup>7</sup> Roger J. Hajjar, <sup>8</sup> Michael P. Snyder, <sup>7</sup> Ricardo E. Dolmetsch, <sup>4</sup> Manish J. Butte, <sup>5</sup> Euan A. Ashley, <sup>1</sup> Michael T. Longaker, <sup>3,9</sup> Robert C. Robbins, <sup>10</sup> Joseph C. Wu<sup>1,2,3,10†</sup>

# Hypertrophic Cardiomyopathy

- Hypertrophic cardiomyopathy affects 1 in 500 of the population and is characterised by a thickening of the heart muscle.
- The E99K mutation in the ACTC gene causes apical hypertrophic cardiomyopathy.
- The ACTC E99K mutation is change in amino acid 99 from glutamine to lysine.
- There are at least 76 patients from ten families in Spain which have this mutation.

| SAMPLE | FAMILY | INITIALS                     | AGE           | GENOTYP        | PHENOTY                                                                                                                                                 |
|--------|--------|------------------------------|---------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | A      | J                            | 47            | CARRIER        | LVNC                                                                                                                                                    |
| 2      | A      | J                            | 18            | CARRIER        | LVNC                                                                                                                                                    |
|        | -      |                              |               | NON            |                                                                                                                                                         |
| 3      | A      | A                            | 14            | CARRIER        | NORMAL                                                                                                                                                  |
| 4      | В      | 1                            | 30            | CARRIER        | LVINC                                                                                                                                                   |
| 5      | В      | I<br>I                       | 24            | CARRIER        | LVNC                                                                                                                                                    |
| 6      | A      | ľ                            | 62            | CARRIER        | LVNC                                                                                                                                                    |
| 7      | A      | I                            | 34            | CARRIER        | LVNC                                                                                                                                                    |
| 8      | С      | J                            | 39            | CARRIER        | LVNC, ICD<br>(NSVT,<br>abnormal<br>blood<br>pressure<br>response,<br>family SD)                                                                         |
| 9      | С      | Occlude                      | 31            | CARRIER        | LVNC/<br>HCM,<br>aborted<br>SD, ICD,<br>anoxic<br>encephalop<br>athy                                                                                    |
| 10     | С      | Occluded for confidentiality | 70            | NON<br>CARRIER | NORMAL<br>(mother; in<br>this family<br>the disease<br>comes from<br>the father,<br>who died in<br>2006 and<br>also<br>suffered<br>from LVNC<br>and ASD |
| 11     | С      | C                            | 37            | NON            | NORMAL                                                                                                                                                  |
|        |        |                              |               | CARRIER        |                                                                                                                                                         |
| 12     | С      | N                            | 41            | CARRIER        | LVNC                                                                                                                                                    |
| 15     | В      |                              | 1)/           | LARRIER        | LVINU                                                                                                                                                   |
| 14     | В      | A                            | 24            | NON<br>CARRIER | NORMAL                                                                                                                                                  |
| 15     | В      | (                            | 14            | CARRIER        | LVNC                                                                                                                                                    |
| 16     | В      | J)                           | 38            | CARRIER        | ASD<br>(ostium<br>secundum)                                                                                                                             |
| 17     | В      | M                            | 65            | CARRIER        | LVNC,<br>atrial<br>fibrillation<br>LVNC                                                                                                                 |
| 18     | ם      | IVI                          | 43<br>CD 11 1 | CARRIER        | LVIVC                                                                                                                                                   |

LVNC: Left ventricular non compaction SD: sudden death ASD: Atrial septal defect HCM: Hypertrophic cardiomyopathy



Alpha-Actinin (Red) / ACTC1 E99K (Green)

## Gene edited lines to correct/insert mutation



Smith, Owen et al Stem Cell Reports 2018

# Arrhythmia in E99k EHTs









# CRISPR correction of arrhythmia



# Calcium sensitivity in EHTs from E99K patients and a non-carrier









Gene editing of patient-derived iPSC lines is a powerful disease model, which can dissect effects of mutation versus background

# Human embryonic stem cell-derived cardiac progenitors for severe heart failure treatment: first clinical case report.

Intraoperative view of the progenitor cell-loaded fibrin patch that has been slid into the pocket between an autologous pericardial flap and the epicardial surface of the infarct area.



Menasche et al



# Imperial College, NHLI

- Richard Jabbour
- Tom Owen
- Thusharika Kodagoda
- Prag Pandey
- Gabor Foldes
- Nicola Hellen

#### **CBS Staff**

- Hannah Jones
- Phil Rawson
- Alasdair Gallie
- Lindsay Benson

Chris Denning - Univ. Nottingham

Godfrey Smith - Univ. Glasgow

Thomas Eschenhagen, UKE Hamburg

Ipsita Roy - Univ. Westminster









National Centre for the Replacement, Refinement and Reduction of Animals in Research

Rosetree's **Trust**